![]() |
| 網(wǎng)站首頁 | 睡前故事 | 童話故事 | 校園故事 | 勵志故事 | 民間故事 | 成語故事 | 笑話故事 | 經(jīng)典故事 | | ||
![]() |
||
|
||
|
|||||
《幾何原本》讀后感3000字 | |||||
作者:佚名 童話故事來源:本站原創(chuàng) 點擊數(shù): 更新時間:2023/5/25 ![]() |
|||||
《幾何原本》讀后感3000字: 公理化結(jié)構(gòu)是近代數(shù)學的主要特征。而《原本》是完成公理化結(jié)構(gòu)的最早典范,它產(chǎn)生于兩千多年前,這是難能可貴的。不過用現(xiàn)代的標準去衡量,也有不少缺點。首先,一個公理系統(tǒng)都有若干原始概念,或稱不定義概念,作為其他概念定義的基礎。點、線、面就屬于這一類。而在《原本》中一一給出定義,這些定義本身就是含混不清的。其次是公理系統(tǒng)不完備,沒有運動、順序、連續(xù)性等公理,所以許多證明不得不借助于直觀。此外,有的公理不是獨立的,即可以由別的公理推出。這些缺陷直到1899年希爾伯特(Hilbert)的《幾何基礎》出版才得到了補救。盡管如此,畢竟瑕不掩瑜,《原本》開創(chuàng)了數(shù)學公理化的正確道路,對整個數(shù)學發(fā)展的影響,超過了歷史上任何其他著作。 《原本》的兩個理論支柱--比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個理論是無比的成功,它避開了無理數(shù),而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何發(fā)展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問題,一直是人們關注的重要課題。這也是微積分最初涉及的問題。它的解決依賴于極限理論,這已是17世紀的事了。然而在古希臘于公元前三四世紀對一些重要的面積、體積問題的證明卻沒有明顯的極限過程,他們解決這些問題的理念和方法是如此的超前,并且深刻地影響著數(shù)學的發(fā)展。 化圓為方問題是古希臘數(shù)學家歐多克索斯提出的,后來以“窮竭法”而得名的方法!案F竭法”的依據(jù)是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法”證明了許多命題,如圓與圓的面積之比等于直徑平方比。兩球體積之比等于它們的直徑的立方比。阿基米德應用“窮竭法”更加熟練,而且技巧很高。并且用它解決了一批重要的面積和體積命題。當然,利用“窮竭法”證明命題,首先要知道命題的結(jié)論,而結(jié)論往往是由推測、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發(fā)現(xiàn)結(jié)論的一般方法,這實際又包含了積分的思想。他在數(shù)學上的貢獻,奠定了他在數(shù)學史上的突出地位。 作圖問題的研究與終結(jié)。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法?梢娝褔L試著作過其他正多邊形,碰到了“不能”作出的情形。但當時還無法判斷真正的“不能作”,還是暫時找不到作圖方法。 高斯并未滿足于尋求個別正多邊形的作圖方法,他希望能找到一種判別準則,哪些正多邊形用直尺和圓規(guī)可以作出、哪些正多邊形不能作出。也就是說,他已經(jīng)意識到直尺和圓規(guī)的“效能”不是萬能的,可能對某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發(fā)現(xiàn)了新的研究結(jié)果,讀后感這個結(jié)果可以判斷一個正多邊形“能作”或“不能作”的準則。判斷這個問題是否可作,首先把問題化為代數(shù)方程。然后,用代數(shù)方法來判斷。判斷的準則是:“對一個幾何量用直尺和圓規(guī)能作出的充分必要條件是:這個幾何量所對應的數(shù)能由已知量所對應的數(shù),經(jīng)有限次的加、減、乘、除及開平方而得到!保▓A周率不可能如此得到,它是超越數(shù),還有e、劉維爾數(shù)都是超越數(shù),我們知道,實數(shù)是不可數(shù)的,實數(shù)分為有理數(shù)和無理數(shù),其中有理數(shù)和一部分無理數(shù),比如根號2,是代數(shù)數(shù),而代數(shù)數(shù)是可數(shù)的,因此實數(shù)中不可數(shù)是因為超越數(shù)的存在。雖然超越數(shù)比較多,但要判定一個數(shù)是否為超越數(shù)卻不是那么的簡單。)至此,“三大難題”即“化圓為方、三等分角、二倍立方體”問題是用尺規(guī)不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(Gauss)在1796年,19歲時,給出了正十七邊形的尺規(guī)作圖法,并作了詳盡的討論。為了表彰他的這一發(fā)現(xiàn),他去世后,在他的故鄉(xiāng)不倫瑞克建立的紀念碑上面刻了一個正十七邊形。 幾何中連續(xù)公理的引入。由歐氏公設、公理不能推出作圖題中“交點”存在。因為,其中沒有連續(xù)性(公理)概念。這就需要給歐氏的公理系統(tǒng)中添加新的公理--連續(xù)性公理。雖然19世紀之前費馬與笛卡爾已經(jīng)發(fā)現(xiàn)解析幾何,代數(shù)有了長驅(qū)直入的進展,微積分進入了大學課堂,拓撲學和射影幾何已經(jīng)出現(xiàn)。但是,數(shù)學家對數(shù)系理論基礎仍然是模糊的,沒有引起重視。直觀地承認了實數(shù)與直線上的點都是連續(xù)的,且一一對應。直到19世紀末葉才完滿地解決了這一重大問題。從事這一工作的學者有康托(Cantor)、戴德金(Dedekind)、皮亞諾(Peano)、希爾伯特(Hilbert)等人。當時,康托希望用基本序列建立實數(shù)理論,代德金也深入地研究了無理數(shù)理念,他的一篇論文發(fā)表在1872年。在此之前的1858年,他給學生開設微積分時,知道實數(shù)系還沒有邏輯基礎的保證。因此,當他要證明“單調(diào)遞增有界變量序列趨向于一個極限”時,只得借助于幾何的直觀性。實際上,“直線上全體點是連續(xù)統(tǒng)”也是沒有邏輯基礎的。更沒有明確全體實數(shù)和直線全體點是一一對應這一重大關系。如,數(shù)學家波爾查奴(Bolzano)把兩個數(shù)之間至少存在一個數(shù),認為是數(shù)的連續(xù)性。實際上,這是誤解。因為,任何兩個有理數(shù)之間一定能求到一個有理數(shù)。但是,有理數(shù)并不是數(shù)的全體。有了戴德金分割之后,人們認識至波爾查奴的說法只是數(shù)的稠密性,而不是連續(xù)性。由無理數(shù)引發(fā)的數(shù)學危機一直延續(xù)到19世紀。直到1872年,德國數(shù)學家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù),并把實數(shù)理論建立在嚴格的科學基礎上,才結(jié)束了無理數(shù)被認為“無理”的時代,也結(jié)束了持續(xù)2000多年的數(shù)學史上的第一次大危機。 《原本》還研究了其它許多問題,如求兩數(shù)(可推廣至任意有限數(shù))最大公因數(shù),數(shù)論中的素數(shù)的個數(shù)無窮多等。 在高等數(shù)學中,有正交的概念,最早的概念起源應該是畢達哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對任意直角三角形都成立。并由畢氏定理,發(fā)現(xiàn)了無理數(shù)根號2。在數(shù)學方法上初步涉及演繹法,又在證明命題時用了歸謬法(即反證法)?赡苡捎谑軄G番圖(Diophantus)對一個平方數(shù)分成兩個平方數(shù)整數(shù)解的啟發(fā),350多年前,法國數(shù)學家費馬提出了著名的費馬大定理,吸引了歷代數(shù)學家為它的證明付出了巨大的努力,有力地推動了數(shù)論用至整個數(shù)學的進步。1994年,這一曠世難題被英國數(shù)學家安德魯威樂斯解決。 多少年來,千千萬萬人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過歐幾里得幾何的學習受到了邏輯的訓練,從而邁入科學的殿堂。 |
|||||
童話故事錄入:admin 責任編輯:admin | |||||
| 設為首頁 | 加入收藏 | 聯(lián)系站長 | 友情鏈接 | 版權(quán)申明 | 網(wǎng)站公告 | 管理登錄 | | |||
|